Controversies on new animal models of Parkinson's disease pro and con: the rotenone model of Parkinson's disease (PD).
نویسندگان
چکیده
A general complex I deficit has been hypothesized to contribute to neurodegeneration in Parkinson's disease (PD) and all toxins used to destroy dopaminergic neurons are complex I inhibitors. With MPTP or 6-OHdopamine, this hypothesis can not be tested since these toxins selectively accumulate in the dopaminergic neurons. However with rotenone, which penetrates all cells, the hypothesis can be tested. Thus, the proof of the hypothesis is whether or not rotenone-induced neurodegeneration mimics the degenerative processes underlying PD. Low doses of rotenone (1.5 or 2.5 mg/kg in oil i.p.) were administered to Sprague Dawley rats on a daily basis. After about 20 days of treatment, signs of parkinsonism occurred and the concentrations of NO and peroxidase products rose in the brain, especially in the striatum. After 60 days of treatment, rotenone had destroyed dopaminergic neurons. Behaviourally, catalepsy was evident, a hunchback posture and reduced locomotion. Other transmitter systems were not, or much less affected. L-DOPA-methylester (10 mg/kg plus decarboxylase inhibition) potently reversed the parkinsonism in rats. Also when infused directly into the dopaminergic neurons, rotenone produced parkinsonism which was antagonized by L-DOPA. Some peripheral symptoms of PD are mimiced by rotenone too, for example a low testosterone concentration in the serum and a loss of dopaminergic amacrine cells in the retina. These results support the hypothesis of an involvement of complex I in PD and render the rotenone model as a suitable experimental model. The slow onset of degeneration make it suitable also to study neuroprotective strategies. Evidence that rotenone-induced neurodegeneration spreads beyond the dopaminergic system is not contradictory given that, according to the new staging studies, also degeneration in PD is not confined to dopamine neurons.
منابع مشابه
Investigating effect of chamomile hydroalcoholic extract on movement disorders in the animal model of Parkinson's disease
Background & Aim:Parkinson's disease (PD) is a kind of disorder in the nervous system, which is characterized with multiple movement disorders. Factors such as oxidative stress are the most important causes for the degeneration of dopaminergic neurons in the substantia nigra and occurrence of Parkinson's disease. Thus, medications that have antioxidant functions could be an int...
متن کاملEffect of ellagic acid on thiol levels in different brain tissue in an animal model of Parkinson's disease
Background & Aim: Parkinson's disease (PD) can be created with loss of dopaminergic substantial nigra neurons which is widely associated with oxidative stress and reduced glutathione (GSH), as the most important and abundant thiol in tissues and one of the antioxidant defense, is one of the earliest biochemical events related to Parkinson's and consumption of antioxidants has a protective effec...
متن کاملEffect of ellagic acid on thiol levels in different brain tissue in an animal model of Parkinson's disease
Background & Aim: Parkinson's disease (PD) can be created with loss of dopaminergic substantial nigra neurons which is widely associated with oxidative stress and reduced glutathione (GSH), as the most important and abundant thiol in tissues and one of the antioxidant defense, is one of the earliest biochemical events related to Parkinson's and consumption of antioxidants has a protective effec...
متن کاملInvestigating effect of chamomile hydroalcoholic extract on movement disorders in the animal model of Parkinson's disease
Background & Aim:Parkinson's disease (PD) is a kind of disorder in the nervous system, which is characterized with multiple movement disorders. Factors such as oxidative stress are the most important causes for the degeneration of dopaminergic neurons in the substantia nigra and occurrence of Parkinson's disease. Thus, medications that have antioxidant functions could be an int...
متن کاملThe antioxidant effect of hesperetin and nano-hesperetin on activity of catalase and superoxide dismutase enzymes in the hippocampus of animal model of Parkinson's disease
Background and objectives: Hesperetin flavanone is a natural bioflavonoid found abundantly in citrus fruits with antioxidant and anti-inflammatory properties. Nano sizing techniques improve the bioavailability of poorly soluble drugs such as hesperetin. Main feature of Parkinson's disease is the degeneration of dopaminergic neurons in the substantia nigra. The rate of oxidative...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neural transmission. Supplementum
دوره 70 شماره
صفحات -
تاریخ انتشار 2006